
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  17 ( 1 9 8 2 )  3 1 7 9 - 3 1 8 8  
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A method for the determination of the interfacial bond strength in well-aligned short 
glass fibre-reinforced polypropylene samples is discussed. The method takes into account 
the variation of the interracial shear stress during the deformation process; consequently, 
it yields very consistent results at all values of the composite strain. The influence of the 
fibre orientation with respect to the load axis is appropriately considered using macro- 
mechanical analyses for stiffness and strength of the composite. The method is compared 
with two other methods reported in the literature. 

1. Introduct ion  
The improvement in strength of short glass fibre- 
reinforced thermoplastics is greatly dependent 
upon the characteristics of the numerous fibre- 
matrix interfaces which exist in a composite 
sample. For a satisfactory transfer of stress 
between the polymer matrix and the fibre rein- 
forcement, it is necessary that sufficient adhesive 
strength is developed along the fibre-polymer 
interface. A poorly bonded region at the interface 
will cause rupture of the interface at a very low 
shear stress. This debonded (dewetted) region will 
then spread along the interface until the whole 
fibre is separated from the matrix. Around the 
resulting cavity, high stress concentration can 
develop and this enhances the failure probability 
of the sample. 

It is, therefore, useful to be able to determine 
quantitatively the interfacial bond strength, 7-. 
Bowyer and Bader [1] and Ramsteiner and 
Theysohn [2] have suggested methods for this 
determination. Both these methods are based on 
the fibre pull-out model of Kelly and Tyson [3]. 
Bowyer and Bader's method allows the deter- 
mination of 7- from studies on a composite sample 
containing discontinuous fibres and is based on 
the assumption that 7- is constant at all composite 
strains. The method suggested by Ramsteiner and 
Theysohn is based on a linear relationship between 
the strength of the composite and the fibre volume 
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fraction. It requires the measurement of the 
strengths of samples having well-aligned discon- 
tinuous fibres with different volume fractions and 
is therefore necessarily time consuming. 

In the present work, we use the stress-strain 
relation of a single sample of the composite with 
fibres aligned along the load axis in order to deter- 
mine 7- at failure. The strengths and moduli of 
samples having different orientation to the load 
axis are shown to be consistent with macro- 
mechanical theories. 

2. Theory 
The starting point is the fibre pull-out model of 
Kelley and Tyson [3]. According to this model, 
there is a critical length, le, given by the following 

expression: Ef rf ec 
lc - (1) 

7" 

where Ef is Young's modulus for the fibre material, 
rf is the fibre radius, ec is the composite strain and 
r is the interfacial shear stress. For a subcfifical 
fibre of length l, the average stress is: 

lr 
(O,),ub = (2) 

and for a supercritical fibre of length l, the average 
stress is: 

Efeer' ] 
(0f)su p = Efec 1 ~ 1. (3) 
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Using the well-known law of mixtures for 
composites, the composite stress can be calculated. 
Bowyer and Bader [1] suggested the final ex- 
pression as: 

% = r l (X+ Y ) + Z ,  (4) 

and 

where 

X = ]~(subcritical) rLiVi/2rf, (5) 

(1  ,eor,] 
Y = ~(supercxitical)Efee ~ / Vj, 

(6) 

Z = Eraec(1 -- V:0, (7) 

where 77 is the orientation factor; Vi and Vj are the 
volume subfractions of fibres with lengths l i and li, 
respectively, Era is the matrix modulus and V~ the 
volume fraction of all fibres. In Equation 5, the 
summation extends over all fibre-length intervals 
below the critical length and in Equation 6 over all 
intervals above the critical length. 

While applying the equations given above, 
Bowyer and Bader assumed that the value of the 
shear stress (r) is same at all values of the compo- 
site strain (ee). The second assumption made by 
them was that the Kelly and Tyson model can be 
applied at all fibre orientations to the load axis by 
incorporating an orientation factor, r/and thus an 
imperfectly oriented sample can be analysed by 
their procedure and a representative value of rl 
obtained. It is shown below that the constancy 
of r, particularly at low values of ee, leads to 
widely varying values o f t  for the same sample. 

In contrast to Bowyer and Bader's procedure, 
Ramsteiner and Theysohn used well characterized 
and aligned composite samples with fibres oriented 
along the load axis. But they assumed that the 
volume fraction of supercritical fibres was negli- 
gible for their samples and hence Y = 0 in the 
above equations, r was obtained from the slope 
of curves between the composite stress at failure 
and the fibre volume fraction. 

In order to correlate the stiffness and strength 
of aligned fibre samples with different orientations 
to the load axis, it is essential to use macromech- 
anical analysis (see, for example, [4]). Accord- 
ingly, the Young's modulus, E o for an orthotropic 
material loaded in uniaxial tension or compression 
along an axis inclined at angle 0 to the fibre 
direction is given by the following relation: 

1 cos4 0+ ( 1 2riLl 
= E-S- e ,  / sin'-o cos O 
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1 + sin 4 0, (8) 

where E I and E2 are, respectively, the longitudinal 
and transverse moduli, G12 the shear modulus and 
v n the Poisson's ratio of the orthotropic sheet 
in the principal material co-ordinates. 

Similarly the variation of tensile strength, aa, 
with 0 is examined using the Tsai-Hill criterion 
[4]. According to the criterion: 

a~ ( r~  + sin~ O cos 2 0 -- ~ a~ ' 

(9) 

where ol and a2 are the tensile strength in the 
longitudinal and transverse directions, respec- 
tively, and S is the shear strength in principal 
material co-ordinates. Equations 8 and 9 have 
been shown to be applicable for various long- 
fibre aligned composites [5,6]. In case of 
injection-moulded, short glass fibre-reinforced 
thermoplastics samples with well-aligned fibres, 
Ramsteiner and Theysohn [2] and Ramsteiner 
[7] have reported good agreement of the experi- 
mental data with these equations. In the following 
we have also used these equations for extruded 
sheet samples. 

3. Experimental procedure 
3.1. Sample preparation 
Short glass fibre-reinforced polypropylene sheet 
12 cm wide and 0.1 cm thick was extruded using 
Profax PC072-3 commercial glass fibre-fried 
polypropylene granules containing 30% by 
weight of glass fibres. A sheet was also extruded 
from the base homopolymer under similar 
conditions. 

3. 1. 1. Fibre-length d is t r ibut ion 
measurement 

A small piece of the composite sample was sub- 
jected to a temperature of 500~ in an oven to 
burn off the polypropylene matrix and the lengths 
of 700 fibres collected from the sample were 
measured on a Projectina Microscope from which 
histogram of fibre-length distribution was pre- 
pared. The average fibre radius was determined 
to be 7/am. 

3. 1.2. Mechanica l  tes t ing  
Dumb-bell shaped tensile specimens of the stan- 
dard size were cut from the extruded sheet and 
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tested on an Instron tensile tester at a strain rate 
of  1% min -t at 25-+ 2 ~ C. The elastic modulus, 
tensile strength and elongation-to-break were 
obtained from the load-elongation curve. In each 
case, at least five samples were tested and the 
results were found to be very reproducible. 

The torsional modulus of  the samples was 
determined on a torsional tester described in 
detail elsewhere [8].  

4 .  R e s u l t s  a n d  d i s c u s s i o n  
The fibre-length distribution data are shown in 

Fig. 1. The stress-strain curves for the composite 
samples having various orientations to the load 
axis and for the base polymer are shown in Fig. 2. 
The elastic modulus and tensile strength values 
obtained from these curves are shown in Table I. 
An attempt to analyse these data in terms of  the 
Bowyer and Bader theory showed that for a 
particular value of  r, the orientation factor was 
constant only in the higher strain region [9].  This 
suggested that the assumption that r was constant 
at all strains needed re-examination and this is 
done here. 
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T A B L E I Mechanical data on unreinforced and rein- 
forced samples 

Sample Elastic Tensile 
modulus strength 
(kg cm -2) (kg cm -2) 

Polypropylene 8 200 287 
Reinforced polypropylene 

0 ~ 31400 684 
15 ~ 30750 680 
30 ~ 23700 547 
45 ~ 18070 430 
60 ~ 15900 375 
75 ~ 16600 355 
90 ~ 16 800 350 

4.1. Fibre alignment and its influence on 
mechanical properties 

The values of  elastic modulus and tensile strength 
at various fibre orientations were analysed accord- 
ing to Equation 8 and 9, respectively, to establish 
whether or not  the fibres are well aligned in the 

extruded sheet. The measured values of  the 
tensile modulus for various fibre orientations 
and the best-fit curve based on Equation 8 are 
shown in Fig. 3. Similarly, Fig. 4 shows the 

tensile strength values and the best fit curve 

using Equation 9. From the comparisons shown 

in Figs 3 and 4 it is seen that the orientation 
dependence of  both  stiffness and strength is as 
expected for aligned fibre composites. The effect 
of  any fibre misalignment or error in preparing 
the sample so that  the fibres have a desired 
inclination to the true 0 ~ direction is most promi- 
nent for the 0 = 0 ~ case because of  the predomi- 
nance of  the cos 0 terms. From the figures, the 
average misorientation was estimated to be only 
+ 5 ~ . The theoretical curves in Figs 3 and 4 
correspond to the following values of  the elastic 
and strength constants: 

E1 = 33 000 kgf cm -~ , a l  = 720 kgf cm -2 

E2 = 1 6 8 0 0 k g f c m  -2, as = 3 5 0 k g f c m  -2 

G-m s ] 0.132 x 10 -3 cm 2 kgf -1 , 

S = 272.5 k g f c m  -2. 

It may be noted that  the values of  E1 ,E2 ,  a l  and 
02 are quite close to the measured values of these 
parameters given in Table I. As regards G~2, the 
shear modulus;  vm, the Poisson's ratio and S, 
the shear strength,  the following comments may 
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be made. Gt2 comes out to be about 6580kgf  
cm -2 for v12=0.33 and 8403kgfcm -2 for 
v12 = - - 0 . 2 2 .  No direct method for the measure- 
ment of G12 using a prismatic sample is available 
[4]. A low frequency (1 Hz) torsion pendulum 
test on a narrow strip sample with fibres oriented 
along the length gave an approximate value for 
G~2 around 8000 kgfcm -2. vt2 was not determined. 
While the shear strength of these samples were 
not measured, an injection-moulded sample 
having much poorer fibre orientation was found 
to have a buckling shear stress on a constant rate 
of loading type of torsion tester [14] close to 
205 kgfcm -2. It would thus appear the macro- 
mechanical approach is reasonably successful for 
these samples. 

4.2. Determination of the interfacial bond 
strength using Bowyer and Bader's 
procedure 

The stress-strain curve for the 0~ (7 ~ 1) 
was analysed to obtained the interfacial bond 
strength, i.e. r at failure. However, before under- 
taking this analysis, Equations 4 to 7 were 
rewritten in the following form: 

E~r~ 2 
~e--Vm(om)ee = aT"-t-/3e e ~---(ee) , (10) 

where 

and 

L Vl 
C~ = ]~(suberitieal) 2 r f '  (11) 

/3 = EfVs,v,  (12) 

Vi 
3` ----  ~(supereri t ieal)f i .  (13) 

All these symbols have been explained in Section 2 
except Vsuv which is the total volume fraction of 
supercriticat fibres and (ore)% which denotes the 
matrix stress corresponding to the composite 
strain. Also, whereas B o w e r  and Bader assumed a 
linear elastic behaviour for the matrix for all 
strains (see Equation 7), we use the actual stress- 
strain curve for the matrix. 

From Equations 11 to 13, it is seen that a,/3 
and 3  ̀ are functions of I e and the fibre4ength 
distribution only because l c determines if a fibre 
is supercritical or subcritical. Using the histogram 
of fibre length, a,/3 and 3' have been plotted in 
Fig. 5 as functions of l e. These graphs simplify 
the calculations very much. 

As suggested by Bowyer and Bader, trial 
values of r are considered and using Equations 
1 and 4 to 7, ~ is calculated at several values of 
e c. The value of r, which yields the same value 
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of r/ at all composite strains is selected as the 
shear strength of the interfacial bond. Since our 
sample was well characterized with the inclination 
of the fibres to the load axis very close to 0 ~ i.e. 
r / ~  1, the criterion adopted for the acceptance of 
r was that the quotient 

v _ (  ~....om.% ~ 1, (14) (7 e 

X + Y  

for all strains. Various values of r in the range 
160 to 240kgfcm -2 were tried but only ~ =  
220 kgfcm -2 showed any reasonable agreement 
with Equation 14 and this agreement was limited 
to the strains close to failure only. Over the entire 
range of strains considered (0.005 to 0.045), the 
value of the quotient varied from 0.41 to 0.92. 
The graphical representation of the results will be 
given in the next subsection. 

The large variation of the quotient (or 7/) over 
the range of the composite strains shows that the 
assumption of the constancy of ~- at all strain levels 
is not valid. From a physical point of view, such 
an assumption implies that the interface is stressed 

to its maximum attainable strength even at low 
composite strains. 

Deviating from this assumption, the following 
two alternatives were considered: 

(a) T is proportional to ec ; and 
(b) z is proportional to oc. 

The first alternative showed a much wider vari- 
ation than in the r =constant  case. So this 
hypothesis was discarded. However, case (b) 
implying r = K o e ,  where K is constant, yielded 
much better results and is discussed below. 

4.3.  I n te r fac ia l  shear s t reng th  us ing 

E q u a t i o n  T = KOc 
Various trial values of K were considered for the 
same data. For K = 0.28, the Criterion 14 was 
satisfied quite well over the entire range of strain. 
This indicates that there is a good agreement 
between the calculated values of ( X +  Y) and 
( ( 7  e - -  Vra(Om)ee ) values obtained from the stress- 
strain curves of the reinforced and the unreinforced 
samples. 

The results of both analyses are compared in 
Figs 6 to 8. The results labelled "Bowyer and 
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Figure 6 The critical length as a function of composite strain obtained from the two theories. 

Bader theory" correspond to the calculations for 
~" = 220 kgfcm -2 in Equation 2, and the results 
labelled "present theory" are those obtained for 
K = 0.28. It is seen that the values of the critical 
length (le) , contribution of subcritical fibres X 
and that of supercritical fibres Y differ signifi- 
cantly for these two calculations. The comparison 
between X +  Y and t r e -  Vm(om)e  e values for 
both cases is shown in Fig. 8 and the close agree- 
ment obtained for the T = K o  e case (present 
theory) is noteworthy and discussed below. In 
Fig. 8 the quotient r~, as defined in Equation 14, 
has also been plotted for both calculations. The 
"present theory" values over the entire strain 

range are close to cos 4 (5 ~ = 0.984 where 5 ~ was 
found to be the average misorientation (see 
Section 4.1 above) and the expression 7"/= cos 4 0 
was suggested by Bowyer and Bader [1] for 
aligned fibre composites. However, the Bowyer 
and Bader theory values of r/ approach 0.984 
only near the failure strain. 

The experimental results suggest very strongly 
that the shear stress acting at the interface 
between the fibre and the matrix is a function 
of the composite stress ae for a well-aligned 
short fibre-reinforced polypropylene sample 
loaded in tension along the fibre direction. More- 
over, this functional relationship is linear or very 
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Figure 7 The parameters X and Y as functions of composite strain obtained from the two theories. 

nearly so. Various theoretical models for the 
same problem, assuming both fibre and matrix 
to be linearly elastic, show that the interfacial 
shear stress is proportional to the applied load. 
These models have been discussed in various 
monographs (see, for example [10,11]).  A 
recent paper [12] addressed to this problem uses 
shear4ag analysis. That this proportionality is 
nearly true for a non.linear, non-elastic matrix 
material in the range of strains considered (0.005- 
0.045) is an interesting result. Outwater [13] 
has proposed a model, specifically for aligned 
fibre-reinforced polymers, which attributes the 
interfacial shear strength to friction between 

the fibre and the matrix caused by shrinkage 
stresses generated during curing or solidification 
of the matrix. In that sense, K plays the role of 
the coefficient of friction. 

Finally, the value of the interfacial bond 
strength, i.e. the value of r at failure, has been 
found to be 204.1kgfcm -2. Ramsteiner and 
Theysohn found this value to be 225 kgf cm -2 
for the composites using chemically modified 
polypropylene. Also our value compares favour- 
ably with the predicted value of the matrix shear 
strength. The tensile strength of the unreinforced 
polypropylene was found to be 287 kgfcm -2. 
From the equivalence of tensile stress and shear 
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stress, i.e. r = 0/, , /2 for polypropylene [14],  the 
shear strength of  the matrix material is found to 
be 202 kgf cm -z . 

5 .  C o n c l u s i o n s  

It has been shown in this paper that the use of  the 
linear relationship between the interfacial shear 
stress and the composite stress, i.e. r = Ka  c, pro- 
duces a close agreement between [ix c --  Vm (ore)% ] 
and [X + Y].  Since X and Y, respectively, denote 
the average stresses to which the subcritical and 
supercritical fibres are subjected, the values of  
X and Y will be in error if lc is not correctly 
determined. Thus, in our view, the principal 
contribution o f  the equation r = K o  e is the 
proper evaluation of  the critical length during 

the deformation process. Equation 1 can now be 
written as: 

Hence the critical length is inversely proportional 
to the secant modulus of  the stress-strain curve 
of  well-aligned short glass fibre-reinforced poly- 
propylene sample loaded in tension in the direc- 
tion of  fibres. On the other hand, according to 
Bowyer and Bader's procedure, I e is proportional 
to ee since r is constant. 

Secondly, for the purpose of  determining the 
interfacial bond strength, it is preferable to use 
the 0 ~ fibre orientation stress-strain curve because 
there is no component of  the applied stress acting 
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transverse to the fibres. Intuitively it is expected 
that  this transverse component  will influence the 
value of  K. This point  is under consideration. 
Another  aspect o f  the effect of  fibre orientation 
(0) deals with the stiffness and strength properties 
of  the composite.  It has been shown that  Equations 
8 and 9 described this effect adequately for short 
fibre-reinforced thermoplastics. The use of  a single 
orientation factor for both  stiffness and strength 
of  composites,  as adopted by many workers in this 
area, is erroneous since, from the mathematical  
point  of  view, it  is equivalent to replacing the 
fourth order and second order tensor transfor- 
mat ion relations by a single scalar factor. 

Finally, comparing our procedure for the 
determination of  the interfacial bond strength 
with others as reported above, it  is stated that  
our procedure is consistent and economical since 
the stress-strain curve of  only one volume fraction 
and one orientation of  fibres is required. 
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